When bad things happen to good scanners: Heap Errors

On certain Radio Shack, GRE and Whistler scanners, specifically the ones using Object Oriented programming, one can be beset with an error message that reads “Heap Error” along with some seemingly random text.

These are caused when the radio doesn’t know how to deal with an Object programmed into the memory, usually a Talkgroup (TGRP) not assigned to a  Trunked System (TSYS).

If you can get into the radio programming you should make sure ALL talkgroups entered as Objects are assigned to a Trunked System. This is pretty easy to do in ARC500 or other programs but a lot more difficult without software. These radios are hard enough to program manually let alone find orphaned TGRP objects.

When programming by hand be sure to associate every TGRP with a TSYS BEFORE saving it. When programming with software sort the TGRP list by TSYS and make sure all are assigned to a TSYS. If it says “New” for the TSYS then you need to change or delete the TGRP. Also check for duplicates in your list of TGRP’s. These can also cause errors.

If you don’t have software to program the radio and can’t get into the radio to edit the objects you may well have to reinitialize it and start all over. (Press 0, then 1, then enter during the startup screen.) While this will erase the radio it will get rid of the dreaded Heap Error. If you have software you can usually read the radio even if a Heap Error is present.

Object Oriented programming is used for the following scanners:

GRE: PSR310, PSR410, PSR500, PSR600

RadioShack: PRO-106, PRO-197, PRO-651, PRO-652

Whistler: WS-1040, WS-1065

Scanner Tip: Antenna Connectors       

Ever wonder why some scanners have different type of antenna connectors? Ever wonder what BNC, SMA or PL259 stand for? Read on and learn!

Most scanners these days have either a BNC or an SMA antenna connector. BNC’s are the ones with the round barrel (about the same diameter as a pencil) and 2 little nubs that you twist on and off to. SMA’s are smaller threaded connectors. Both SMA and BNC mounts have a small center conductor that is surrounded by a ground that is the barrel.

Why are these used for scanners? Well, it is because they work well at a reasonable cost. For years the BNC has been pretty much the standard scanner antenna connector, replacing the old “Motorola” antenna connect that had been around since dirt was invented. Some old scanners used the “UHF” connector. Almost all scanners over the last 10 years or so use either the BNC except for some handhelds that use the SMA.

Until scanners started to standardize on the BNC handhelds use a wide variety of connections, including several different threaded connectors, earphone style plugs and permanently mounted antennas. Most mobile or desktop scanners used Motorola connectors since these were also used on most car radios. Some old scanners used SO-239’s (the female part of the UHF connector), which were common for CB’s and other two-way radios. By the 1980’s many scanners started showing up with BNC’s, both handhelds and base/mobiles.

As handheld scanners shrunk in size some started having SMA connectors replacing the BNC’s. This save a bit of room but forced the manufacturers to produce new antennas and include adaptors. Some scanners that have SMA’s also come with a BNC adapter to allow you to use your existing BNC antennas and accessories, ScannerMaster also sells these adapters.

BNC’s is a bayonet type connection. These press in, with the nubs fitting into grooves. They get locked in with a slight twist and this provides a good physical and RF connection.

SMA’s are a fine threaded connection, the connector itself is smaller than the BNC, both inside the radio and out. With smaller radios, like the BCD396 series, this little bit of extra space helps. Since most scanner users already have BNC antennas, coax connectors and accessories, the manufacturers often include an SMA to BNC adapter to let you use all your existing goodies. Some high-end radio receovers come with “N” connectors. Look close at these and you might notice that a male “N” connector will fit onto a female BNC. They were developed by the same guy, the “N” in both connectors comes from his last name: Neill.

BNC connectors get their name from the bayonet layout (“B”), and the developers, whose last names started with “N” and “C”. SMA stands for “Sub-Miniature Type A”. There are also SMB and SMC but you will likely never see one.

Many two-way radios these days use “Mini-UHF” connectors, these are smaller versions of the venerable UHF connectors. “UHF” connectors actually do not work well on UHF frequencies. The original UHF connector was so named before WWII, when anything about 30 MHz. was a radio wasteland suitable only for hobbyists and experimenters.

All these connectors come in a Male or Female version. This is based on the center pin/socket. The connectors with a pin are male. The UHF connector is a little odd, in that it has common names for the distinct parts. The SO-239 is the female, used on the radio while the PL-259 is the male used on the coax. “SO” stands for Socket, “PL” stands for Plug. Most other connectors use the same name but with female/male parts, such as SMA, BNC and N.

Scanner Tip: It is a Digital World!

Many areas of the country have switched to “Digital”. What does this mean for the scanner listener? What is “Digital” anyway?

First, before we go any further, the number one question we get about digital scanners is whether they will also work on analog. The answer is YES. All digital scanners work just fine on analog channels, always have and always will.

Digital radio means that instead of using a regular AM (where the amplitude [strength] is changed) or FM (where the frequency is modulated or changed) signal , a digital signal type is used. This is a signal that is converted to the base 0’s and 1’s, compressed, and sent out on the airwaves. A digital receiver then converts it back and lets you hear it.

There are several types of digital that are of interest to scanner listeners. The most common for police, fire and other public safety use is APCO’s P25 system. This is widely used by both trunked and conventional (non-trunked) radio systems across the country. Several manufacturers, like Motorola, Harris and others sell P25 systems and equipment. While the P25 standards are supposed to ensure that any companies radios will work on the various systems, in practice some companies often add new “features” that tend to lock out other company’s radios from working with the system.

P25 comes in several flavors. “Phase 1” is the original single channel-per-frequency protocol used on conventional systems and most trunked P25 systems. “Phase 2” P25 effectively splits channels using TDMA (See technobabble below) to allow 2 simultaneous conversations on the same frequency, effectively doubling the capacity of a trunked system. If your system uses Phase 2 be sure to get a Phase 2 capable scanner!

Technobabble here: Phase 2 uses Time Division Multiple Access, more commonly known as TDMA. The radio system divides a radio signal into timeslots of tiny fractions of a second. In Phase 2 systems a certain time slot is assigned to the “0” channel and the other slots are assigned to the “1” channel. This allows 2 conversations to be held at the same time on the same frequency. The communications are restored at the receiver so it can be processed and heard by the user. Decoding software like UniTrunker or Pro96Com will show these sub-channels as “851.0375/0 and 851.0375/1”.

Some areas of the country have gone to a system called “OpenSky”, manufactured by Harris. While these systems have not been successful in many instances, the systems in place cannot be monitored by scanners. Harris has since dropped OpenSky from its catalog and is selling P25 systems now.

One trend that is growing in some areas is the use of various “DMR” systems. These are sold under various trade names like MotoTRBO, NXDN and others. They all use fairly similar digital protocols but current consumer scanners do not cover them. There are some SDR (Software defined radio) and advanced receivers (like the new AOR DV1) that will allow one to monitor these systems. The reason many agencies select these is usually cost, the radios are fairly cheap, especially when compared to P25 radios. While they may not be as durable, the replacement costs are often less than a repair would be. Businesses however have embraced these cheaper forms of digital radio and they are common on business channels. Railroads have agreed on using NXDN digital modes but implementation has been very slow. Ham radio operators use some of these also, as well as D-Star.

Do not confuse digital voice with encryption. While it is true that many digital systems are encrypted these days, most are not and these are perfectly legal to listen to. Also do not confuse digital voice with digital data. Most police and fire agencies use some sort of data systems for MDT’s or video, these systems cannot be monitored without huge budgets and massive computing power. Listening to digital transmissions on an analog only scanner will not work, you will just hear noise.

Some people hear and understand received digital communications better than others. The absence of background noise sometimes makes it uncomfortable for some users, since it can be mistaken for non-radio conversations. Digital certainly sounds different than analog but occasionally causes issues with things like firefighters protective gear. Usually it is just a matter of getting used to how it sounds. In addition, when digital signals are weak they tend to get garbled. Many agencies call this “going digital” since it makes a weird noise.

Digital scanners are more expensive than analog ones. This is mostly due to licensing requirements for the technology. While prices have gone down recently they still are usually about twice as expensive than analog scanners with similar features.

Will there be more scanners with DMR modes like TRBO and NXDN? We don’t know yet, but if and when they do become available we will be among the first to have them. The AOR DV1 is available now and does receive several of the digital modes.

AOR DV1 Firmware Alert

The AOR DV1 has another new firmware update (v1507f) available at http://www.aorusa.com/support/firmware.html.

Below are the updates included in this release. Future releases will address other issues. Please contact AOR directly at http://www.aorusa.com/ with questions and suggestions.

The installation instructions are fairly simple, copy the firmware file to the SD Card, turn the radio on and press a couple keys. The instructions are included with the file.

Following features have been implemented:

* Backup to and restore from SD card

Following bugs have been removed:
* Fixed “auto-store” bug when SEARCH is running.
* S-Meter indicator stayed sometimes on even though power was off.
* When the file 99999999.wav was present in the SD card, the next recording was mistakenly named 10000000.wav. Now the recording after 99999999.wav is made impossible.
* Priority receive was not always functioning.
* Could not go out of settings screen after priority receive activation.
* Receiver would not restart properly if the function key was pressed before switching the receiver off.
* Invalid characters on LCD when time settings accessed during memory receive.
* Incorrect memory channel content switch when priority mode was activated during memory scan
* When erasing a search bank the LCD froze on “writing” indication.
* Memory bank editing was not possible during SCAN.
* Erasing search bank 39 in search group settings was impossible.
* Auto-store function: If memory bank 39 was full, channels 46 to 49 were not kept in memory after a reboot.
* Invalid characters on screen when “writing” was displayed.

FUNCTIONS AND BEHAVIOR CHANGES:
* When SEARCH is stopped and the [ENT] key pressed, the currently received frequency and settings are copied to VFO-Z.
* VOL/SQL maximum value changed from 100 to 99.
* (PC remote control through Hyperterminal commands). When receiver is turned off with the QP command and USB cable disconnected, the next time the receiver is turned on through the front panel, it will start in a “non-remote control” state.

Scanner Tip: Everything you need to know about trunking but were afraid to ask

In the old days of scanning things were pretty simple, you put in the local police frequency to listen to the police. In many parts of the country however, this no longer works. Most cities, many counties and even entire states use Trunking Systems. What are trunking systems and how do they work?

The best way to explain how a trunking system works is the analogy of a set of bank teller lines. The bank has 5 tellers, you can line up at any of the 5 lines and hope your line goes faster than the others. Then you get stuck behind the lady that wants to have her penny jar counted by hand…

These days however, banks have a single queue and you go to the next available teller when you reach the head of the line. This is exactly how a trunked radio system works: All users are in one queue and get assigned the next available channel. Instead of having a separate frequency for the FD, one for the PD and another for the ambulance, they just go to the next channel that isn’t being used.

All this is controlled by a computer system called, appropriately enough, a “Controller”. The Controller watches the system and when a radio requests to talk it assigns that radio and any other radio in its group to a channel. All this happens in a fraction of a second.

Radios have all the frequencies used by the system programmed into them and the system is broken down into various virtual channels, called “Talkgroups”. Talkgroups are assigned to various uses like channels would have been before. For example, Mayberry PD might be assigned Talkgroup 101 for Dispatch, 102 for Car-Car and 103 for Detectives. Mayberry FD might be assigned Talkgroup 123 for Dispatch, 124 for Fireground and 125 for Tactical. If Mt. Pilot is sharing the system they might be assigned Talkgroup 287 for Police Dispatch and so on.

There are several types of trunking systems but they all work in much the same way. There are differences in the way they get programmed into scanners as well. The main types of trunked systems in use by Public Safety agencies in the USA include Motorola, EDACS, LTR, APCO25 Phase 1 and APCO25 Phase 2.

For scanner listeners these trunked systems add a layer of complexity to the programming. Depending on the type of scanner and the type of trunked system the method used to program differs. For newer Unidens you program in a “System” to identify the type of trunking, then “Sites” to put in the frequencies used and lastly “Groups” for the talkgroup listing. Whistler, GRE and Radio Shack scanners with Object Oriented programming work differently. On LTR and EDACS systems you have to identify the proper “LCN” channel numbers, these are usually well documented at www.radioreference.com. Motorola and APCO25 systems do not need the frequencies in any particular order.

HomePatrol and other scanners with the Database feature will have these Trunked System parameters already programmed so you can just select the Service and location to listen to them. They do all the heavy lifting for you.

Keep an eye on the ScannerMaster Blog for our explanation of Digital operations!